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A microscopic theory of the boundary conditions (BC) obeyed by the hydrody- 
namic equations at a smooth wall is presented. The BC thus obtained contain 
several new features. Special attention is given to the role of surface tension. A 
purely hydrodynamic theory of thermophoresis is worked out based upon the 
new BC. 

KEY WORDS: Boundary conditions; generalized hydrodynamics; ther- 
mophoresis. 

1. I N T R O D U C T I O N  

A very large amount  of effort has been expended in deriving hydrodynamic 
equations from the microscopic equations of motion. These derivations 
have been mainly carried out, however, with no explicit treatment of the 
boundaries enclosing the system, and so have not provided a microscopic 
theory of the boundary conditions (BC) obeyed by the hydrodynamic 
equations. Recently, attention has shifted (]) to construction of a micro- 
scopic theory of BC. 

To derive BC, one must, somehow, write down equations which 
explicitly include the interaction of the system with its walls. The BC are 
determined by the behavior of the equations nea r  and at the walls. Of 
course, a major difficulty is that the equations may differ drastically from 
their usual forms near the walls, over and above any explicit (external 
force) wall contributions. 
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In general, little is known about hydrodynamic equations near walls. 
One important ingredient of these equations is, however, fairly well studied 
- - the  pressure tensor, which, 2 near a wall, contains a part involving the 
surface tension. It thus behooves us to incorporate everything we know 
about surface tension into the hydrodynamic equations. For now, we must 
be content to treat other wall features of the equations, such as new 
transport coefficients, formally. 

In this paper, we consider a smooth flat wall, and use the general 
approach (1~) of Ronis and Oppenheim. Our main goals are twofold. First, 
we wish to obtain, microscopically, even if only formally, the complete BC, 
that is, we include, in principle, all possible contributions of the wall. 
Secondly, we wish to incorporate the surface tension as simply as is 
possible. The microscopic equations give the coefficients of the hydrody- 
namic equations as equilibrium (with wall) averages. So far, surface tension 
has entered the theories via (lb'lc'ld) identification of some averages which 
also appear in an equilibrium theory (z) of surface tension. We will show 
how to avoid this procedure. 

Our new BC differ significantly from those in common usage. Of 
course, we do find that the BC are zero normal velocity, zero tangential 
stress, and zero normal heat flux; anything else would be unphysical. Our 
actual expressions for the stress and heat flux, however, are not those which 
hold far from the wall, and this is the reason that our BC are not the usual 
ones. As a demonstration of the consequent implication, we give, in the last 
section, a calculation of the thermophoretic force. This force vanishes in a 
hydrodynamic approximation based upon the usual BC. 

2. EQUATIONS 

The hydrodynamic equations describe the time evolution of the non- 
equilibrium averages (denoted -) of the conserved densities, the number 
density, 

n(r, t) = 2 6(r - r i ( t ) )  ( la)  
i 

the momentum density, 

g(r, t) = ~ pi( t )6(r  - ri(t)) ( l b )  
i 

2 For a review see Ref. 2. 
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and the energy density, 

p (O 1 
e ( r , t ) = ~ ,  2~-m-- + 2- ~e~(ri(t)-rj(t))6(r-ri(t)) (lc) 

i j ~ i  

ri(t ) and p;(t) denote the position and momentum of particle i at time t, 
respectively, m is the mass, and q, the intermolecular pair potential. No 
angular degrees of freedom will be considered here, and we further ignore 
memory effects. 

The standard projection operator (3) or response theory methods may 
then be extended, as shown (le) by Ronis and Oppenheim, to obtain 
equations valid for small deviations from equilibrium in the presence of the 
wall, 

~ t  ~(r, t) = V-(noV ) (2a) 

0 s a--7 ~(r, t) = - 7 -P(r, t) + V. ( f r o  (r, s) ff-D (r', 0 ) )"  Wv(r', t) 

+ f0=d, fdr '  V. < YD (r, s)jD(r')) �9 V'T(r',t) 

+ Fw (2b) 

~(r,t)~)t = f d, f V'T(r ' , t )  

fdsfdr'V'(jD(r,s)ff-D(r',O)): V'v(r', t) (2c) + 

The conjugate forces to the conserved densities are the velocity field, v, and 
the temperature, T, and are understood to denote deviations from equilib- 
rium, while YD and jD denote the dissipative stress tensor and heat flux, 
respectively; n o is the equilibrium density, P the nonequilibrium pressure 
tensor, F w the force directly exerted by the wall, and ( ) denotes an 
equilibrium average in the presence of the wall. The details of the deriva- 
tion of Eqs. (2) may be found in Ref. le. 

Equation (2a), of course, is just the linearized continuity equation. We 
have kept the spatially nonlocal forms of Eqs. (2b, c), so they contain, in 
principle, derivatives of all orders. To reduce them to finite-order equations, 
we expand (~a) the quantities to the right of the correlation functions in a 
power series about r ' =  r; the usual second-order equations result from 
keeping only a single term in the series. We are trying to find BC on the 
ordinary hydrodynamic equations, so, by construction, keeping a single 
term will be valid far from the wall, that is, the conjugate forces must be 
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sufficiently slowly varying. The only reason that we keep the nonlocal 
equations is to treat the region very close to the wall. 

The correlation functions simplify according to the symmetry of the 
system. In a spatially homogeneous and isotropic system as far from the 
wall in the anisotropic wall system, they are functions of r - r' only, and 

f )-- , (3a) 
( y ~ x , f f - x x )  = 43~ + ~/B (3b) 

and 

(jxx,j y) = _ ( 3 c )  

where v/and 7/B are the shear and bulk viscosities. All other types of stress 
tensor autocorrelation function vanish, as do all the stress-heat flux corre- 
lation functions; the ordinary Navier-Stokes equation then results from 
Eq. (lb). 

For an inhomogeneous system with one preferred direction, the sec- 
ond-order equations become more complicated. Let the term containing the 
velocity field on the right-hand side of Eq. (2b) be denoted V.o .  Then it is 
not hard to determine that 

or(r) = F(r)S(r,  v) + [A (r) - 2 C ( r ) ] 7  .vl 

+ [C(r)  - g ( r ) ] ( I -  ~r~) �9 S(r,v) �9 (I - t~tl) 

[ D(r) - E(r) F ( r ) l ~ .  S(r,v) - r~ 
+ 2 

+ [ E(r) - A (r) + 2C(r)]~r~V .v (4) 

where r/is the unique direction, 

avo 

and 

( s )  

A = ( y x x , y x x )  (6a) 

C = ( g - x y , j - x y )  (6b) 

D = ( y z z , y z ~ )  (6c) 

E = (ff-x~, f f -~  ) (6d) 

F - -  (ff-x~, y x z  ) (6e) 

in Eqs. (6), we have let r~ = 2, with x and y equivalent. If the wall is at 
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z --0, o will take on its homogeneous, isotropic form for large enough z, 
since 

A = D  I C F large z (7) 
E A - 2CJ  

and these quantities also become r independent. Consequently, only the 
first two terms in Eq. (4) survive far from the wall. The remaining 
combinations of A - F  are confined to the ~ layer," while F and 
(A - 2C) can be divided into bulk and boundary layer parts. Of course, all 
coefficients vanish inside the wall. 

In principle, the nonlocal equations could become even more compli- 
cated tensorially than those based on Eq. (4). However, we will assume that 
any such effects are negligible, and just use a nonlocal version of Eq. (4); 
we follow this approach for the rest of the transport terms in Eqs. (2b, c) as 
well. 

The coupling to T on the right-hand side of Eq. (2b) vanishes in the 
usual equations. For the wall, we find, denoting the term by V . ~ r  

g r =  Q(r)(~VT + VT~) + JR(r) - 2Q(r) - O(r)]~r~ 

x ,~. v r + O(r),~ �9 V rJ (8) 

where 
Q = (~-zx,jx) (9a) 

R = (ff-z~,jz) (9b) 

O = (ff-xx,jz) (9c) 

All these quantities are confined to the boundary layer. 
Turning to the energy equation, of course, for the homogeneous 

isotropic case, 

(j%j~) - ~ (10) 

where K is the thermal conductivity. The coupling to v vanishes, giving rise 
to Fourier's law. In the presence of the wall, writing V-J  for the first term 
on the right-hand side of Eq. (2c), we have 

J = V(r)VT + ~[ V(r) - U(r)]r~- v r  (11) 

with 

and 

U = (jx,j~) (12a) 

V = (jz,jz) (12b) 
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Finally, we write the energy-velocity coupling as 7 .  j r ,  and 

- J V = Q ( r ) S . r ~ + [ R ( r ) - Z Q ( r ) - O ( r ) ] ~ r ~ . V v . ~ + O ( r ) r ~ V . v  (13) 

The hydrodynamic equations have now been given in their most general 
local form, and we next will derive BC from nonlocal equations with the 
same tensorial structure. The pressure tensor will be discussed later on. 

3. SURFACE MULTIPOLE MOMENTS 

3.1, Dissipative Terms 

We now use the method of Ronis and Oppenheim (la~ to obtain the 
BC. In schematic notation, the full nonlocal equations are 

2 = my  (14) 

which, far from the wall, simplify to the usual equations, 

2 + = m + y  + (15) 

Although x +, y + is not a solution near the wall, we obtain BC by setting 
x = x + 0 +, y = y + 0 +, where 0 + is the unit step function, and forming the 
quantity 

2 - 0 + 2  + = m O + y  + - O + m + y  + ==- Z (16) 

which is confined to the boundary layer. The surface multipole moments of 
Z are (]a) 

Z j =f~_~ d z z J Z  (17) 

and BC result when the correct number  of Z J, starting a t j  = 0, are equated 
to zero; the number  of Z j is just that which will give the right number  of 
BC. 

In our case, the bulk equations (m + ) are the usual hydrodynamic 
equations, as just discussed, plus Eq. (2a) far from the wall, which is just, 
again as usual, 7 .  v + = 0. To solve these equations, we need four BC at the 
wall. Less empirically, the idea is that, for a system described in bulk by 
hydrodynamics, the boundary layer is in some sense thin, and the thinness 
associates a small parameter  with each j ;  higher moments  may then be 
considered automatically satisfied. This argument still needs to be made 
more rigorous, but, for now, we do confine ourselves to j = 0. Further 
support for the approach comes from the fact that it reproduces the 
standard BC in the absence of the new features discussed here. Of course, 
retaining j = 0 provides five BC, one for each vector component  of the 
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combined three equations. Rather than a difficulty, this turns out to be 
fortuitous. 

The goal of the Ronis-Oppenheim method is to obtain BC on the far 
fields, x +, y +. If the details of y in the boundary layer are important for 
determination of the surface multipoles, then the BC are found from 
complicated equations which contain the boundary layer behavior of the 
s Unless simplifying approximations can be used here, the basic method 
becomes so complicated as to be useless. 

Now, the normal surface moment of the Navier-Stokes equation 
cannot be obtained without complete knowledge of the density in the 
boundary layer. F w is just nV4, and V~, the gradient of the wall-molecule 
potential, is extremely rapidly varying near the wall; thus, n must be known 
in complete detail to evaluate this term. On the other hand, the remaining 
four moments can be gotten to a very good approximation by just writing 

+ 

Only four BC are required on the ordinary hydrodynamic equations, 
which hold far from the wall. It seems reasonable, then, to take them from 
the four moments which are easy to evaluate. This does not mean that we 
do not satisfy the fifth moment. Given five BC where four are needed, one 
must be redundant. So, unless the entire approach is faulty, use of any four 
moments should give the same answer, and nothing is wrong with choosing 
the four which are tractable. This choice is in accord with the usual practice 
in hydrodynamics, where BC on the normal stress are not needed. Basically 
this same argument was used in Ref. 1 e. We would, of course, like to have a 
better understanding of why, by apparent coincidence, the number of BC 
required equals the number of tractable moments, not the number of 
moments; this is surely a fascinating coincidence. 

Since we start with nonlocal equations, even the j = 0 multipoles will 
contain derivatives of all orders, which will be generated via the expansion 
("localization") of y ( r ' ) abou t  y(r) in the r' integrals. Since the y+  are by 
construction (hydrodynamic limit) slowly varying, we will only keep one 
term in this expansion. In addition, we will keep no derivatives higher than 
first order. 

We now work our ZJ for the dissipative, transport coefficient parts of 
the equations. Since the procedure is straightforward we will carry it out in 
detail for one term, and then just state the final results. 

Consider the shear viscosity term in the momentum density equation. 
The multipoles are 

z~=fdzzJ[V~ fdr 'F ( r , '  V' + + ' + r)( ev e +v,ovee +) 

; , +  ] - O + V ~  dr F (r, 'r)(Vp%' + - v ~ v ~ ) '  + (18) 
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When a = z, we perform a partial integration. The surface terms vanish 
because F ~  F + as z -+ oo and F = 0 at z = - oo (inside the wall). Thus, 

f If + +  
Z/~;.=, = - j  dz z j - '  dr 'F( r , r ' ) (V}v+0 + + V,v e 0 ) 

- O + f d r ' F  + (r,r ')(V}v + + V;v~+)] 

+ f d z z J S ( z ) f d r ' F  + (r,r ')(V}v + + V'vB + ) (19) 

the third term arises when V z acts on 0 + in the partial integration of the 
F + contribution. 

Two types of functions sit on the right of F and F+ ,  v+, or V v+, 
which is slowly varying by construction, and 6(z) (VzO + ), which, of course, 
is not slowly varying. Slowly varying functions are "localized," expanded 
about r ' =  r, as discussed earlier. With these ideas in mind, it is easy to 
obtain 

z~,d=z = (a,,o, - j  { fazz ' - ' fdr '  [ F(,,r')O + (z ')-  O+ ( z )F +  (r ,r ' ) ]  } ) 

+ (Vv + + v  + v)Bz(x,  y , z  = 0) 

-,  {[ fdz,,-'fdx' de' F(xez, x'/O)](t); + v:8 ,z ) (x ,  y , z  = 0) 

+ . - - }  (20) 

The 8j,0B comes from the third term in Eq. (20) via use of Eq. (3a) and 
localization. The first integral on the right-hand side is the "surface excess" 
of F, which would vanish if F maintained its bulk form in the boundary 
layer (F  will vanish for z or z' < 0). The second integral springs from the 8 
function, Vz0 +. The " �9 �9 �9 " represents the contribution of (r' - r) �9 Vv in 
the expansion of v(r') about v(r). 

For a = x, y, we remove the V~ from under the integral, and 

z~;~=x = VxfaZ zJfar'[ r ( r , r ' )O + - 0  + F( r , r ' ) ]  

, +  , +  ; ' ;  . . . .  + x(vet)~ +%t)e )+v~ a~z ax ay F(r, xyO)t)~ (x'/O)~,~ 

)FJVx(Vt) + -t-I) + V~(xy~ - J + ,xe F~ VxV x (xyO)6ez (21) 
|OC 

where FJ is the surface multipole of F, and 

FI = f dz Z' f dx' ay' F(xyz, x'70) (22) 
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The above manipulations illustrate the treatment of a term which is 
nonzero in bulk. For coefficients confined to the boundary layer, the 
integrand of zJ has no subtraction 0 + rn +, since m + = 0, and F j is defined 
accordingly, but otherwise no new ideas are needed to evaluate the multi- 
poles. We eventually find 

y z J ~  �9 O" 

= aj,0~S + .t~ + (A - 2C ) j ( I  - ~ ) .  7 (v  + -~) + F ~ V . ( I -  ~ ) .  v + 

- j [  F i - ' 0  + ,~,~) �9 ,,+ + ( A -  2Cy;-1,*,~- �9 + + . . . ] - j F J - l S  + .~ 

D - E  F J - I  . S  + ~ 2 ( D - E  j - I  F]~ r~.v + +  . . .  

- j~[ (E-A-2C~- I~ .v  + +  . . .  ] (23) 

In obtaining Eqo (23), we have noted that, far from the wall, Eq. (2a) is, as 
usual 7 .v + = 0, so we have discarded all 7 .v + from the BC. Proceeding 
similarly, we evaluate the coupling of ~ to the temperature, with the result 

f zjv'"T=Ol(I- ~)" VT+-J~[ Rj-I~" VT+ +Rj-IT+ + "' 'l  

-jQJ-1(I - ~ ) -  V T + (24) 

Turning to the energy equation, 

f dz zJV . a = Sj,o   . v r +  - j I  uJ-'  . v r +  + ' r+  + . . . ]  (25) 

and 

f dz z J r .  J~ = Q { V .  0 - ~ ) .  v + 

-JI SJ-' ~zV~(~ " v+ ) 

+ R J - 1 ~ .  Vv + .~ + R ~ - l r ~ . v  + + � 9  ] (26) 

3.2. Euler Terms; Pressure Tensor 

Let us now turn to the reversible "Euler" terms in the equations. The 
moments  of F w cannot be evaluated but, as mentioned at the beginning of 
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this section, are not needed. Equation (2a) is easy; we require 

f r On 0 zJ = zJ(V.nO+v + -n~O + V.v +)  = J z J v f  

= v + f zJ ~n~ ~v+ f z  j+' On~ W + ~ az + " ' "  (27) 

where we have used 7 - v  + = 0  and O+no=no; we keep Ono/~Z as an 
entity, since it is conveniently confined to the boundary layer. 

Sett ingj  = 0, we would obtain a mixed BC for the normal velocity, 

(Ono/OZ) l 
~ . v + ( ~ n ~  o ~ . Vv.  ~ = 0 (28) 

if we were to keep the second term on the right-hand side of Eq. (28). We 
do not wish to do this, as it is inconsistent with our general approach, and 
the 7v  term should be small for our problem. Nevertheless, we do want to 
point out that the microscopic theory does not have to give the macroscopic 
BC, r~. v = 0, depending on the situation. This possibility has been dis- 
cussed in the different context of self-diffusion by a small particle by 
Hynes, (4) and perhaps that represents such a case. 

We finally turn to the pressure tensor, which must be expressed in 
terms of the fluid variables. If we choose to employ the conjugate forces, 
then (le) 

P~(r)  =far' [ ( f f -~ ( r )n ( r ' ) ) /~ ( r ' )  + ( f f -~B(r)e( r ' ) )T(r ' ) ]  (29) 

where the chemical potential,/L, makes its initial appearance, n and e really 
mean n - (n) ,  etc, and i f -  is the full (not dissipative) stress tensor. It might 
seem that/~, which does not appear in the ordinary hydrodynamic equa- 
tions, should be eliminated in terms of its conjugate, n. We now show, 
however, that a treatment of P in the boundary layer is simplified by 
retention of/~ as a variable. 

In bulk systems, (5) the averages in Eq. (29) may be attacked in two 
ways. First, (Sa) they may be written down microscopically, and the resulting 
microscopic expression can be related to the corresponding expression for a 
known quantity, in particular, a thermodynamic derivative. Of course, it is 
of first importance to substitute known quantities, as the thermodynamic 
derivatives, for the formal averages which appear in microscopic dynam- 
ical theories. But, this can also be done (Sb) in a very simple way. Aver- 
ages like ( f f - ~  (r)x(r '))  are rigorously equal to the functional derivative, 
~P~t~(r)/~y(r'), where y is conjugate to x. Given a knowledge of 87/6x, 
6P/6x can also be considered. In the absence of walls, starting from 
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equilibrium, a spatially uniform 6y or 6x simply generates a new equilib- 
rium system, and, thus 

8y(r') (30a) 

(OF), =fdr'dr" 8P(r) 8y(r ' )  (30b) 
~x 6y (r ' )  dx (r') 

where the quantities on the left are ordinary thermodynamic derivatives, 
with the remaining independent variables held constant, and we have noted 
that, in an equilibrium bulk system, P(r)-+pl, p being the usual pressure. 

The integrals on the right of Eqs. (30) are, of course, what appear when 
Eq. (29) is "localized," so the thermodynamic derivatives may be intro- 
duced into the dynamical theory immediately, with no need for a micro- 
scopic theory of the derivatives. For bulk systems, all this may be done 
using either x or y. In the presence of a wall, however, use of y is required. 
Near the wall, x is not uniform, addition of a uniform dx does not create a 
new equilibrium system, and f(SP/dx) is not a thermodynamic derivative. 
The conjugate y 's  are constant even near the wall in equilibrium, however, 
s o  

8P(~) O(P(r)) (31) 
< .  

0 ( P ( r ) ) / 0 ( y )  is an equilibrium thermodynamic derivative in a nonuniform 
system, characterized by a position-dependent pressure tensor but constant 
( y ) .  We suggest that use of Eq. (31) provides the easiest way to incorporate 
known equilibrium properties of nonuniform systems into the problem at 
hand. 

Thus, Eq. (29) is localized: 

(r') y § (r) 

0 +(r')(r'-r) .7y +(r)+ .-. (32) 

The quantity in the first bracket is just the thermodynamic derivative of Eq. 
(31), since the functional derivative is just an average in the presence of the 
wall and must vanish for z or z' < 0 due to the Boltzmann factor, so 0 + 
cannot have any effect on the integral. 
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The pressure tensor has been much studied ~2) for nonuniform systems, 
and for our case we have 

<P(r)> = pO +1+  o ( I -  ~)6(z) (33) 

where o is the surface tension. It follows that 

( 0 p ~  +0 + 0o ( P ( r ) =  ~ ) y  I + \ ~ ] y + ( I - , , ) 6 ( z ) + . . .  (34) 

surface multipoles are now easy to write down: 

Of course, by 8/8y we mean 8/8~)  r and 8 / 8 T ) , ,  and so forth, and P+ 
is pl. 

Note that o is the surface tension for the solid (wall)-fluid interface, 
and is indeed a function of two independent variables,/~ and T. The extra 
complications present (lu-la) for the two-phase, one-component system, 
where only one variable is independent, do not exist for our problem. 

4. THE BOUNDARY CONDITIONS 

We may now collect all the Z j and obtain the BC keeping only the 
leading contributions to each. We already have, with this convention, 

~.  v + = 0 (36) 

The normal components of the ZJ from Eq. (2b) are to be discarded, and 
the tangential components give two BC, 

= 0 (37)  

where t* is a tangential unit vector. The remaining BC comes from the 
energy equation multipoles, 

x~. V T  + + O~ - r ~ ) .  v + = 0 (38) 

Eqs. (36)-(38) constitute our microscopically derived BC on the ordi- 
nary hydrodynamic equations. To obtain them, we have discarded multi- 
poles o f j  >t 1. A sufficient condition for this to be valid is for the boundary 
layer to be thin. More empirically, keeping more multipoles would overde- 
termine the problem, so our approach must be legitimate if the hydrody- 
namic equations are to make any sense. We have also neglected all but the 
first term arising in the "localization" procedure. This will be correct if y + 
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is slowly varying, which is also a prerequisite for use of the hydrodynamic 
equations. 

Equation (36) is as expected. If only the term proportional to ~ in Eq. 
(37) were kept, we would obtain the zero tangential stress or "slip" BC 
generally employed at a smooth wall. The extra terms result because the 
stress tensor far from the wall, ,/$+, cannot give the true tangential stress at 
the wall. This point is clearly discussed (6) by Landau and Lifschitz, with 
regard to the extra (Oo/OT)~,~. 7 T  + tangential stress. The remainder of 
the equation is given here for the first time. 

Similarly, in Eq. (38), neglecting the surface transport coefficients in 
QO would give the condition of zero normal heat flux, as calculated by use 
of the bulk form of the flux, ~7 T. The extra coupling to v in the BC is the 
consequence of v entering the heat flux near the surface via surface 
transport coefficients. So, our results are consistent with zero tangential 
stress and zero normal heat flux at the wall, but these quantities may not be 
calculated using expressions valid far from the wall. 

According to Eqs. (37) and (38), the solutions to the hydrodynamic 
equations are coupled both through the equations and through the BC. The 
presence of/~ +, which appears in no equations, might be disturbing, but it 
actually creates no difficulty. We emphasize that the bulk equations are the 
usual equations. The coupled Navier-Stokes plus Fourier equations will 
have a solution with our BC in which t ~. V/x + may be initially regarded as a 
parameter. Calculation of p from v via the Navier-Stokes equation then 
allows evaluation of t ~. V/~ + from the relation 

i~+(z=O)=p(z=O; V/z+) - T + ( z = 0 ;  V/~ +) 
T 

(39) 

5. T H E R M O P H O R E S l S  

We now calculate the thermophoretic force on a sphere due to surface 
tension, that is, we ignore surface transport. The first goal of this exercise is 
to illustrate how to use the new BC, and the second is to establish the 
importance of surface tension for thermophoresis in liquids. We are not 
trying to construct a complete theory of thermophoresis in liquids. 

There exists no good theory for thermophoresis in liquids, although 
various ideas have been tried; this is discussed by several authorsJ 7) A 
hydrodynamic calculation based upon the usual BC gives (6) zero force. 
Surface tension has been considered for objects, such as droplets, which 
may be characterized by an internal viscosity. It has been more or less 
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ignored, however, for rigid objects. We will show that the surface-tension- 
induced force can be comparable to that found in experiments, and, 
possibly, could be dominant for very large particles. Thus, although this 
force may not be a good approximation to the total force under most 
circumstances, it cannot be ignored in a complete theory. 

Let the temperature far from the structureless hard sphere of radius a 
centered at the origin of coordinates be T O + Az, i.e., constant T gradient A 
in the z direction. We must calculate the force on the sphere in steady state. 
The energy equation is then just V2T = 0, and the BC is 8. V T = 0 at 
r = a, if we ignore the surface transport part of the BC. The solution to this 
elementary problem is 

T + = T O + Az + Aa3 P" 2 
2 r 2 (40) 

with 

A a 3 
V T + = At + ~ ~-T (I -- 3PP). 2, (41) 

Thus, the BC for the Navier-Stokes equation reads 

�9 * V #  + 0 ,  r a ( 4 2 )  ~/t 'S+ n +  -fiT ~ r 

We try a solution to the Navier-Stokes equation with the same form as 
that in (6} the Stokes problem except that v ~ 0 as r ~ c~, 

v + = (A/r) ( I  + PP). 2 + (B/r3) (3PP-  I). 2 (43) 

and A and B to be found from the BC; the normal velocity BC immedi- 
ately gives 

B = - a2A (44) 

We next evaluate S § from Eq. (43), with the result 

S + 2A ((p . 2 ) ( I -  3P~)-  3a2 } = ~ ~ [(2P + P2) + ( P - 2 ) ( I -  5PP)] (45) 

substitution of Eq. (45) into Eq. (42) yields 

6 A ~ ^ ~  
a2 t . z=-~A3  (~~ ~ , r = a  (46) 

At this point, A would be determined if we knew t*- V/t +. To find this 
quantity, we note, as discussed at the end of the last section, that the steady 
state Navier-Stokes equation is just T/V:v + - V p  + = 0, and v § determines 
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p +. In fact, 

2A~ ^ ^ 

P + - P o -  r5 - -z ' r  

where P0 is the pressure at infinity. And, we have 

(P + -Po) - (-~T ) (T+ - To) = ( - ~  ) r( Iz + - t~o) 

o r  
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(47) 

(48) 

v = - f d r  Vw (55) 

and, at the microscopic level, the force on the sphere, F, is 

t ~- Vp + - (  3P T + = 7/~ + (49) 

The left-hand side of this equation is now available from Eqs. (41) and 
(47); thus 

2ATla-3 f .2 - (OP]  3 A ( t " - 2 ) = ( 0 P )  t .V~t + (50) 
~T]~,2 -~ r 

Upon substitution of this expression for t". V/~ + into Eq. (46) we finally 
obtain A : 

a2A[ ] (51) 
A = ~ 1 + (1/3)a-'(OO/Ol~)r(Op/Ol~); l 

where we have noted that 

and the final fields are all known. 
The last step is to calculate the force. In view of our emphasis upon the 

complicated form of the stress tensor very near the wall, and our explicit 
treatment of the microscopic wall force, Fw, it might be thought that this 
would be more difficult here than in more macroscopic theories, but such is 
not the case. The generalized steady state Navier-Stokes equation may be 
written 

V "  tlrto t q- F w = 0 (53) 

where O'to t is the total stress, 

o=o+erT- -p  (54) 
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The integral is over all space, but, of course, only receives contributions 
from r ~ a ,  and thus may be confined to any sphere with radius d greater 
than a plus the range of Fw. So, combining Eqs. (55) and (53) using the 
divergence theorem we have 

= f d?.cr(?,r = d) (56) F 

If d exceeds a by more than the range of the boundary layer, ~r may be 
replaced by its bulk form. Consequently, F is calculated in the usual way 
on any "outer" sphere. But, the answer cannot depend on d, and therefore 
may be evaluated on the real sphere of radius a. In sum, the macroscopic 
expressions for F still hold, even though, from our perspective, they do not 
employ the true stress tensor. The force is now easy to evaluate: 

F = - 27ra2A ^ z (57) 
1 + (1/3)a-I(3a/Ot~)T(~p/~l~)~. l 

Equation (57) is based upon ordinary hydrodynamics, plus BC which 
incorporate surface thermodynamics; surface transport, or dissipation, has 
been ignored. It represents the simplest extension of a hydrodynamic theory 
ignoring all surface phenomena, which predicts zero force, and is physically 
sensible. The numerator in the bracket gives the total change in o with a 
change in T at constant pressure, including the potentially compensatory 
role of the necessary change in/~. As Landau and Lifschitz ~6) point out, a 
tangential force will then arise in the direction of the gradient, which is 
what we find. Landau and Lifschitz, however, write the change in o terms 
of (3o/~ T) only, that is, they do not include the effect of the change in ~t 
needed to maintain constant pressure. This effect is important for ther- 
mophoresis; for example, one could obtain a net force due to pressure 
alone (with constant pressure at infinity) if only (~p /3T) ,  were included in 
the calculation. 

The denominator of the bracket is not so easy to interpret. Since it 
reduces to unity as a ---> ~ ,  one might ask if we had left out other effect of 
curvature by applying flat wall BC to a sphere. However, at least in the 
absence of surface transport, it is easy to show that nothing has been 
neglected. 

Let us now discuss Eq. (57), and relate it, to the extent possible, to 
experiment. We hasten to point out that our theory, including only surface 
tension effects, is not expected to reproduce the results of experiments. It is 
necessary to realize, however, that no good theory of thermophoresis exists 
for liquids; even order-of-magnitude estimates are unavailable. Thus, it will 
be valuable if we can find out whether surface tension alone causes a force 
even roughly comparable to that observed experimentally. We will then 



Liquid-Wall Boundary Conditions 303 

have at least shown that no theory purporting to be a complete one can 
ignore surface tension, as is now done routinely. Obviously, given such 
limited goals, we will not be concerned with such considerations as that 
macromolecules should probably be modeled as rough, rather than smooth, 
surfaces. Also, in the comparison to follow, we will assume that the force 
on a polystyrene latex sphere is not too different from that on a Teflon 
sphere; this is because we have been unable to find needed data for the 
former case. To repeat, what we are about to do will be qualitative in the 
extreme, but we hope that the reader will be eventually convinced that we 
have actually established some points unambiguously. 

In perhaps the most careful experiments on liquids, McNab and 
Meisen (8) (MM) found that, as in the case of gases, F points toward the 
low-temperature direction. That, and the form of existing theories for 
liquids, led them to define the dimensionless coefficient, a, in terms of the 
steady state thermophoretic particle velocity, 

v T = - a  n-- 1 o v r  (58) 

where the existing theories have a m  1. Converting our expression for F into 
a velocity with Stokes' law for slip BC appropriate for a smooth wall, we 
find 

o a ( O o / O T ) T  
a - (59) 

272 

where (0o/~ T) denotes the sum in the numerator of Eq. (57). 
A difficult problem arises in trying to calculate a from Eq. (59)-- 

almost nothing is known about o for solid-liquid interfaces. Of course, for 
many liquid-gas interfaces, (Oo/OT) is well established. Probably, we can 
do no better than to use the approximate relation, (9) 

which yields 

osL -~ o s + Ol. - 2(OsOL) '/2 (60) 

1 J21oL I J + 1--(~ J2 l o s  

Both OoL/OT and OOs/OT are negative, and one of the quantities in 
parentheses will be negative with the other positive, so OOsL/OT will be a 
sum of a negative and positive term, either of which could dominate. Thus, 
it appears that the surface tension a coefficient can be positive or negative, 
depending on the system. Of course, we must assume that use of standard 
"Handbook"  o's in these relations will give the correct combination of 
partial derivatives which goes in Eq. (59). This seems plausible, but we will 
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not pursue the point, since the goal of this section is to make rough 
estimates only. 

MM studied latex polystyrene spheres with radii of 1.01 and 0.79 x 
10 -4 cm in water and hexane; they reported a=0 .1148  and 0.0874, 
respectively, on the order of 10-20 times smaller than predicted by existing 
theories. At room temperature, Eq. (59) gives, for 10-4-cm particles, 

2.03 X 1 0 2 ( ~ T ) ( w a t e r )  

1.09 • 103( 30 ) (hexane) 
(62) 

Turning to Eq. (61) for (OOSL/OT), w e  note that the solid-gas o s ,  also an 
elusive quantity, is required. If Eq. (60) is to be believed, o s may be 
obtained from measurements of contact angles for two different liquids, 
with known oL, in contact with the solid of interest. The two Young's 
equations, Eq. (60), and the two o L, and contact angles, allow a calculation 
of a s . We have not found the data to enable this approach for polystyrene, 
but Adamson's book (9) tabulates some data for n-octane and n-decane in 
contact with Teflon, and we obtain (CGS units) 

OTeno n = 19.2 
(63) (0o 

= - 0 . 1 1  

In contrast to the highly questionable nature of Eq. (63), the liquid-gas 
numbers are well established. ~ Io) 

o 
, 18.46 hexane - 0.11 -fiT 

and the resulting estimates are 

OTef/liq ~ "q- 0 . 0 3  water (65) 
3T 4.25 • 10 .5 hexane 

a = 6.09 water (66) 
0.05 hexane 

It is impossible to evaluate the validity of our attempts to obtain 
( 3 0 s L / O T ) .  The remarkably good agreement of theory and experiment for 
hexane could easily be a fluke, as could be the too-large theoretical 
prediction for water. More complicated versions of Eq. (60) have (9) been 
suggested, which would give different ( 3 O s z / 3 T ) .  Rather than speculate 
further along these lines, however, we would like to suggest that some 
qualitative points have actually been established, namely, the following. 

(i) In the two calculations tried, (OOsL/OT)  turned out to be positive. 
Thus, the surface tension force need not point in the opposite direction to 
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the true force. Also, it seems that 

30SL << 30 L 

(ii) Whatever else may be important for thermophoresis of large solid 
particles in liquids, the magnitude of the surface tension force is very 
roughly comparable to the experimental force, and thus cannot be ignored 
in any complete theory. 

Turning to the less numerical aspects of the expression for a, Eq. (59), 
note that a was originally defined to be more or less independent of the 
important parameters 7, a, etc., MM concluded that a was in fact indepen- 
dent of these parameters. This contrasts with the a /~  2 dependence of Eq. 
(59), which arises from the unusual a2~ ~ dependence of the surface tension 
force. The a dependence is especially striking. All theories in current 
usage (7~ predict that the force varies as a 2 in gases and as a in liquids. In 
liquids, the radius-squared surface tension force must become larger than 
the forces calculated by other means for sufficiently large particles. The 
most obvious conclusion is that the surface tension force is dominant for 
very large particles. Of course, the forces calculated separately need not 
add. The fact remains that the surface tension force, which makes perfect 
physical sense, varies as a 2. Any theory which purports to be valid for large 
particles, and which predicts Fo~a, must confront this point. 

How might a complete theory be constructed? Within our approach, 
the next step is to incorporate surface transport. This will, of course, involve 
unknown coefficients, which is one reason why we have not done so herein. 
Perhaps, however, the surface transport coefficients can be related to 
quantities in other theories. 

Another question is that of the role of "nonhydrodynamic" effects. We 
have tried to obtain the complete BC on the hydrodynamic equations. 
Thus, we should be able to obtain solutions of fluid flow problems, as the 
thermophoretic problem, very accurately. Small errors will exist, neverthe- 
less, due to the truncation of the gradient and multipole expansions. Such 
errors are negligible in, e.g., Stokes' problem. Suppose, however, that the 
thermophoretic force is, in some sense, "small." The errors may then 
contribute to F, constituting the "nonhydrodynamic" force. These ideas 
should be more precisely formulated, but, in any event, the results of a full 
hydrodynamic calculation will be interesting. 

6. S U M M A R Y  AND DISCUSSION 

We have given the BC at a flat wall based upon the method of Ronis 
and Oppenheim. The most fundamental statement of these BC is just the 
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usual one--zero normal velocity, zero tangential stress, and zero normal 
heat flux. However, the usual relations between the stress and heat flux, 
and the fluid fields, are modified by inclusion of surface transport coeffi- 
cients and surface thermodynamics. The transport terms can only be given 
formally, which nevertheless seems, at least for the sake of completeness, 
worthwhile. The contribution of surface thermodynamics to the BC can, on 
the other hand, be expressed in terms of thermodynamic derivatives of the 
wall-liquid surface tension. 

The new BC allow a nontrivial hydrodynamic calculation of the 
thermophoretic force. For the resulting expression, Eq. (57), to be valid, the 
fluid should indeed act as a continuum, that is, a liquid is indicated. We 
have made an attempt to estimate DOse~aT and compare theory and 
experiment. No quantitative conclusions can be drawn, but, clearly, surface 
tension cannot be ignored in any complete theory of thermophoresis in 
liquids. For what it is worth, the calculated force is in fair agreement with 
MM's experiment on hexane. 
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